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Abstract

■ Temporal processes play an important role in elaborating
and regulating emotional responding during routine mind wan-
dering. However, it is unknown whether the human brain reli-
ably transitions among multiple emotional states at rest and
how psychopathology alters these affect dynamics. Here, we
combined pattern classification and stochastic process model-
ing to investigate the chronometry of spontaneous brain activity
indicative of six emotions (anger, contentment, fear, happiness,
sadness, and surprise) and a neutral state. We modeled the dy-
namic emergence of these brain states during resting-state fMRI
and validated the results across two population cohorts—the

Duke Neurogenetics Study and the Nathan Kline Institute
Rockland Sample. Our findings indicate that intrinsic emotional
brain dynamics are effectively characterized as a discrete-time
Markov process, with affective states organized around a neutral
hub. The centrality of this network hub is disrupted in individ-
uals with psychopathology, whose brain state transitions exhibit
greater inertia and less frequent resetting from emotional to
neutral states. These results yield novel insights into how the
brain signals spontaneous emotions and how alterations in
their temporal dynamics contribute to compromised mental
health. ■

INTRODUCTION

As people go about their daily lives, they cycle through
many emotions that are triggered by a combination of
external stimuli and internal thoughts. Mental processes
determine the intensity and duration of these affective
experiences through both effortful and automatic influ-
ences. While sustaining positive emotions like happiness
and contentment contribute to well-being, excess eupho-
ria can lead to heightened risk-taking and manic episodes.
Similarly, negative emotions like fear in situations of im-
pending threat promote vigilance and strategic coping,
whereas unregulated anxiety impairs cognitive function-
ing even in safe environments. Emotions are thus dynam-
ical systems (Lewis, 2005), and a key component to
healthy emotion regulation is the ability to experience spe-
cific emotions when they are conducive to goal-oriented
behavior and to terminate them and shift to other affec-
tive states to avoid maladaptive consequences (Cole,
Ramsook, & Ram, 2019).
Despite the potential importance of these dynamics to

mental health and well-being, research on the temporal
properties of emotions, or “affective chronometry,” is
sparse but growing (Davidson, 2015). Conceptual frame-
works in this field emphasize several temporal parame-
ters that are thought to play key roles in emotion
processing. For instance, emotional reactivity is charac-
terized not only by the threshold for eliciting a response

and the response amplitude but also its duration, which
can be further decomposed into the rise time to the peak
response, maintenance time of the peak response, and
recovery time back to baseline (Davidson, 1998).
Emotions are also characterized by variability in their
quality and/or intensity over time in response to chang-
ing stimulus contingencies, appraisals, goal pursuits, and
social interactions. Such variation occurs over multiple
timescales, from those that are initiated within seconds
of an eliciting event to those measured over hours, days,
or weeks. By contrast, “emotional inertia” refers to the
resistance of emotions to changes over time, which leads
to a carryover of emotional experience despite changing
environmental demands or intrinsic motivations
(Kuppens & Verduyn, 2017). Finally, there may be char-
acteristic sequencing or temporal co-occurrences of spe-
cific emotions, either because of their inherent functional
relationships (e.g., relief following the termination of anx-
iety), their natural comingling (e.g., anger that accom-
panies contempt), or poor differentiation among them
(confusion between similar emotions, such as shame
and guilt; Kuppens & Verduyn, 2017).

Behavioral studies have examined these temporal rela-
tionships using ecological momentary assessment (EMA),
which longitudinally samples emotional experience in
the real world at prescribed temporal intervals over sev-
eral days or weeks. A meta-analysis of 79 EMA studies
found that psychological health was associated with emo-
tional experience patterns that had less inertia, were less
variable, and were more stable, particularly for negative
emotions (Houben, Van Den Noortgate, & Kuppens,
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2015). These dynamic measures may be important for
predicting affective trajectories over time and for distin-
guishing affective disorders from one another. For in-
stance, one study found that greater liability and negative
affect in 7-year-olds predicted poorer adaptive self-
regulation at 8 years of age and internalizing symptoms
at 9 years of age (Kim-Spoon, Cicchetti, & Rogosch,
2013). In adults, instability of reported affect over a 10-
day periodwas related to individual differences in trait anx-
iety, whereas average levels of positive and negative affect
were related to individual differences in depression
(Heller, Fox, & Davidson, 2019). Theoretical models, with
substantial empirical support, implicate emotional insta-
bility in borderline personality disorder, whereas emotional
inertia is generally associated with stress and depressive
symptoms (Kuppens, Allen, & Sheeber, 2010; Trull et al.,
2008; Tull, Barrett, McMillan, & Roemer, 2007; Suls, Green,
& Hillis, 1998). Counter to this body of evidence, a recent
meta-analysis of a smaller subset of 15 EMA studies found
that dynamic measures may not add much value relative to
measures of mean affect levels to predict overall psycho-
logical well-being (Dejonckheere et al., 2019). The authors
stated that some of the studies included in their meta-
analysis may have sampled emotions too sparsely (some
only sampled once per day) and that typical subjective mea-
sures of well-being emphasize general affect over a broad
timescale, such as assessing average sadness over a 2-week
period, which emphasizes global, static facets of affective ex-
perience. The authors also suggested that machine learning
tools may provide a promising means forward to identify
more useful features of affective patterning in complex
time series data.

Thus, there is a need for research paradigms to sample
affective states at a more refined temporal scale, to inno-
vate more objective measures of affect that go beyond
general symptom questionnaires, and to utilize more sen-
sitive quantitative metrics of temporal dynamics. Wichers
has argued that smaller units of experiential variation at
the “microscale” of minutes to hours would establish the
smallest building blocks of momentary experiences that
contribute to the formation and long-term trajectory of
psychopathology (Wichers, 2014). She further postulates
that reinforcing loops and continuous interplay among
different momentary affective states in response to emo-
tion elicitors can alter the balance between healthy and
maladaptive outcomes in the long run and that these
dynamics may be influenced by individual differences in
genetic or early-life experiential risk factors for psychopa-
thology. Ruminative thinking may play a key role in alter-
ing the natural course of emotion dynamics by extending
the duration of self-reflective negative thoughts via an im-
paired disengagement mechanism (Koster, De Lissnyder,
Derakshan, & De Raedt, 2011). Although these ideas were
initially applied to explain major depressive disorder, ex-
tensions of this argument can be readily made for other
facets of psychopathology, including the role of worry in
anxiety disorders.

One potential fruitful avenue is to incorporate neuro-
biological measurements in these studies to derive more
objective indices of emotional state dynamics as they
naturally unfold over shorter timescales. Communicated
aspects of subjective emotional experience may only
partially overlap with physiological indices (Scherer,
2009), and affective self-reports are subject to bias, social
desirability, and other experimenter demand characteris-
tics. Moreover, behavioral sampling by EMA does not
provide a continuous measurement of affect change.
Nonetheless, most neuroimaging studies of emotion fo-
cus only on the immediate response to brief emotional
stimuli like faces or scenes that likely reflect stimulus
evaluative processes rather than induced experiential as-
pects of emotion. Electrophysiological studies have ex-
amined temporal brain dynamics involved in the initial
orienting, appraisal, and regulation of the emotional elic-
itor that occur within hundreds of milliseconds to sec-
onds of stimulus onset (e.g., Luo, Jiang, Chen, Zhang, &
You, 2019; Paul, Simon, Kniesche, Kathmann, & Enrass,
2013; Pourtois, Delplanque, Michel, & Vuilleumier,
2008). Some fMRI studies have shown carryover effects
that reflect residual processing of an emotional event sev-
eral seconds after its termination (e.g., Heller et al., 2015;
Walter et al., 2009; Siegle, Steinhauer, Thase, Stenger, &
Carter, 2002) or the lingering impact of an emotional state
minutes later during a subsequent cognitive task
(Tambini, Rimmele, Phelps, & Davachi, 2017; Wang,
LaBar, & McCarthy, 2006). Even less is known about the
emergence and sequencing of intrinsic emotional states
during unconstrained periods of spontaneous thought
(Kragel, Knodt, Hariri, & LaBar, 2016), although it is hy-
pothesized that, during these periods of quiescent self-
reflection, ruminative thinking impacts negative affect
perseveration in depression, anxiety, and other disorders
(Northoff, Wiebking, Feinberg, & Panksepp, 2011; Nolen-
Hoeksema, Wisco, & Lyubomirsky, 2008).
Despite the initial advances in characterizing emotional

brain dynamics, it remains unclear how to detect and
quantify transitions among discrete emotional states in
the brain over a timescale of tens of seconds to minutes
and whether the temporal patterns relate to psychopa-
thology risk. To address this gap in the literature, we un-
dertook an affective neurocomputing approach to track
how the brain cycles among various emotions while par-
ticipants’ mind wander at rest. We built upon our
previous fMRI work that used machine learning to de-
code six emotions (anger, contentment, fear, happiness,
sadness, and surprise) and a neutral state from film and
music inductions (Kragel & LaBar, 2015). This prior study
established the reliable separability of cortical-limbic-
subcortical networks for each affective state using cross-
subject validation. Activity in these distributed networks
that informed the classifier’s performance tracked the
online subjective experience of the emotions elicited by
the stimuli. We then applied the emotion-specific maps
to model the spontaneous elicitation of the same brain

716 Journal of Cognitive Neuroscience Volume 34, Number 5



states during resting-state fMRI (Kragel et al., 2016). We
found that fluctuations in resting-state fMRI activity can
be decoded into discrete affective states that exhibit spa-
tiotemporal coherence and predict subjective reports of
feelings that emerged during the resting-state scan.
Finally, we showed that the frequency distributions of
sad and fear brain states during the resting-state period
predicted individual differences in self-reported depres-
sion and state anxiety, respectively, immediately after
the scanning session.
In this study, we extended this line of research by

modeling the intrinsic brain dynamics associated with
the same affective states as a discrete-time Markov pro-
cess. The model generates probabilities that reflect the
likelihood that an individual will remain in the same affec-
tive state from one brain sample (repetition time [TR]) to
the next in the resting-state time series (self-transitions),
as well as the probabilities that reflect the likelihood that
they will transition from one affective state to another
(other-transitions) for all possible combinations in the
set. Importantly, this modeling approach does not as-
sume that the affective states individuals traverse at rest
are quantitatively similar to prototypical emotional epi-
sodes, either in terms of brain activity or subjective expe-
rience. Rather, it assumes that relative engagement of the
cortical-limbic-subcortical networks that predict each af-
fective state exhibit reliable dynamics at rest, just as activ-
ity in motor cortex exhibits intrinsic activity that is low
amplitude (when compared with overt motor behavior)
but is nonetheless highly correlated (Biswal, Yetkin,
Haughton, & Hyde, 1995).
We quantified the extent to which each brain state acts

as transition hub in the emotion network by computing
the proportion of transitions to each state that originated
from a different state, as opposed to a self-transition,
with higher values implicating greater hubness. We intro-
duce a novel affective chronometry concept—emotional
resetting—as the probability of transitioning from any
emotional brain state to a neutral brain state. Unlike
some return-to-baseline measures, emotional resetting
emphasizes probabilities rather than temporal durations,
and the baseline is specified as a neutral brain state, rather
than any affective state that happened to precede the
emotion change. We conceptualize emotional resetting
as playing an important regulatory function by limiting
the persistence of affective states and by permitting the
system to reestablish a common baseline state, consis-
tent with theoretical models of emotion dynamics
(Lewis, 2005).
We developed the emotion dynamics model in a local

convenience sample, the Duke Neurogenetics Study
(DNS), that was used in our initial resting-state analy-
ses (Kragel et al., 2016). To determine the generaliz-
ability of the model, we tested it across two out-of-sample
cohorts—a hold-out testing set from the DNS and a simi-
larly sized subset of the Nathan Kline Institute Rockland
Sample (NKI-RS; Nooner et al., 2012). To evaluate the

potential utility of the model to capture brain dynamics
that differentiate individuals with psychopathology from
mentally healthy individuals, we conducted additional
analyses on subsets of participants in the two cohorts
based on their clinical characteristics in a transdiagnostic
manner. We hypothesized that our stochastic model
would provide a better fit to the test data than a null model
that preserves the autocorrelation in the time series, thus
demonstrating good out-of-sample validation. We further
hypothesized that, compared with healthy participants, in-
dividuals with a mental health diagnosis would present
with relatively more emotional inertia and less emotional
resetting in their spontaneous brain dynamics.

METHODS

Participants

Model Development Sample

The sample used for model development came from the
DNS, which assesses a wide range of behavioral and
biological traits among young adult university students.
A total of 499 participants from this study (mean age =
19.65 years, SD= 1.22 years; 274 women) had usable data
from two consecutive 256-sec resting-state fMRI scans
(512-sec total scan duration) as part of the protocol and
were included in the analyses. The sample was <1%
Native American, 27% Asian, 11% Black, 51% White, 8%
biracial/multiracial, and 3% other. All participants provided
informed consent in accordance with Duke University
guidelines. The DNS sample includes mentally healthy
participants, as well as those with an Axis I disorder or
select Axis II disorders (antisocial personality disorder
and borderline personality disorder), assessed with the
electronic Mini International Neuropsychiatric Interview
(Sheehan et al., 1998) and Structured Clinical Interview
for the Diagnostic and Statistical Manual of Mental
Disorders (4th edition; DSM-IV) subtests (American
Psychiatric Association, 1994). Of the participants includ-
ed in this study, 121 (24.2%) met DSM-IV criteria for cur-
rent or past history of at least one mental health disorder
and/or exhibited current mood/depressive symptoms (9
agoraphobia, 63 alcohol abuse/dependence, 1 anorexia
nervosa, 1 antisocial personality disorder, 1 bipolar II dis-
order, 6 bipolar disorder not otherwise specified (NOS), 2
borderlinepersonalitydisorder, 4 bulimia nervosa, 17 can-
nabis abuse/dependence, 6 generalized anxiety disorder,
15 hypomanic episode, 16 major depressive disorder, 24
major depressive episode, 1 manic episode, 3 mood disor-
der with psychotic features, 6 obsessive compulsive disor-
der, 8 panic disorder, 1 psychotic disorder, 1 seasonal
affective disorder, 4 social phobia, and 34 suicidality). A
random subset of participants was used for model devel-
opment (n = 200), with the remaining 299 participants
held out for as an independent validation sample.
Although no a priori power analysis was conducted due
to the novel, data-driven nature of the project aims and
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our goal of validation in independent cohorts, the data-
base contained a large sample size for resting-state fMRI
analyses, and we included all participants in the database
with usable data at the time the study commenced.

External Validation Sample

A total of 207 participants (mean age = 35.01 years, SD =
20.13 years; 87 women) were included from an early re-
lease of the NKI-RS, which investigates developmental
trajectories for risk and resilience across the life span
(Nooner et al., 2012). The sample was <1% Native
American, 7% Asian, 28% Black, <1% Native Hawaiian,
and 64% White. All participants from this study provided
informed consent, either at the Nathan Kline Institute
or Montclair State University. Mental health disorders
were assessed using the research version of the
Structured Clinical Interview for DSM-IV-TR (First,
Spitzer, Gibbon, & Williams, 2002). We included all partic-
ipants in the database release at the time our study com-
menced with useable resting-state data and a minimum
scan duration that matched that from the DNS (the
NKI-RS participants underwent a 650-sec duration scan).
We chose this database because it is a community-based
sample who are somewhat older than the DNS partici-
pants, which provides a good test case for evaluating
the reliability of the model. Twenty-six participants
(12.6%) from this sample met DSM-IV criteria for current
and/or past history of one or more mental health disor-
ders (2 alcohol abuse/dependence, 1 anxiety disorder
NOS, 3 attention deficit hyperactivity disorder, 2 bipolar
i disorder, 1 body dysmorphic disorder, 1 delusional
disorder, 1 eating disorder NOS, 11 major depressive
disorder/depressive disorder NOS, 2 panic disorder, 4
posttraumatic stress disorder, 2 psychotic disorder NOS,
1 reading disability, 3 social phobia, 1 specific phobia, 4
substance use). Two participants had missing diagnostic
information and were thus excluded from the analyses
comparing healthy and clinical subgroups.

Data Acquisition

Model Development and Internal Validation Sample

Participants were scanned on one of two identical 3-T
General Electric MR 750 systems with 50-mT/m gradients
and an eight-channel head coil for parallel imaging. For
the two consecutive 256-sec resting-state scans (128
functional volumes each), a series of interleaved axial
functional slices aligned with the anterior commissure–
posterior commissure plane were acquired for whole-
brain coverage using an inverse-spiral pulse sequence to
reduce susceptibility artifact (TR = 2000 msec, echo
time = 30 msec, α = 60°, field of view = 240 mm, voxel
size = 3.75 × 3.75 × 4 mm, 34 contiguous slices). Four
initial radiofrequency excitations were performed and
discarded to achieve steady-state equilibrium. Participants

were shown a blank gray screen and instructed to lie still
with their eyes open, think about nothing in particular,
and remain awake.

External Validation Sample

Participants in the NKI-RS sample underwent a scan ses-
sion using a Siemens TIM Trio 3.0 T MRI scanner with a
12-channel head coil. Resting-state fMRI scans were col-
lected using an EPI sequence with the following parame-
ters: TR/echo time = 2500 / 30 msec, flip angle = 80°,
field of view = 216 × 216 mm2, voxel size = 3.0 × 3.0 ×
3.0 mm2, distance factor = 10%, number of slices = 38.
Each scan session was 650 sec long and comprised 260
functional volumes. Participants were instructed to keep
their eyes closed, relax their minds, and not to move.

Preprocessing and Analysis of fMRI Data

All preprocessing was conducted using SPM8 (Wellcome
Department of Imaging Neuroscience). Images for each
participant were slice-time-corrected, realigned to the
first volume in the time series to correct for head motion,
spatially normalized into a standard stereotactic space
(Montreal Neurological Institute template) using a
12-parameter affine model (final resolution of functional
images = 2 mm isotropic voxels), and smoothed with a
6-mm full-width at half-maximum Gaussian filter. Low-
frequency noise was attenuated by high-pass filtering
with a 0.0078 Hz cutoff. Time series for each voxel were
centered to have zero mean and scaled to have unit stan-
dard deviation.
Preprocessed resting-state time series were classified

into multiple distinct emotional states as described in de-
tail previously (Kragel et al., 2016; Kragel & LaBar, 2015).
Briefly, emotion-specific information maps were derived
from a study that used instrumental music and film clips
to induce the six emotions of interest plus a neutral state
(Kragel & LaBar, 2015). Parameter estimates were beta-
weights in the general linear model of each induction
trial for each voxel (mean-centered, gray matter masked,
and unsmoothed). Decoding was performed via partial
least squares discriminant analysis (PLS-DA). The PLS re-
gression coefficients, which indicate the importance of
each voxel in informing the classifier’s emotion category
predictions, were then remapped to standard space and
corrected for multiple comparisons. This analysis yielded
a distributed cortico-limbic-subcortical network that
characterized importance maps for each emotion classifi-
cation (see Figure S1 in Kragel et al., 2016). The resting-
state classifications were achieved by computing the dot
product between these voxel-wise parameter estimates
for the seven emotion-specific maps and the prepro-
cessed resting-state fMRI data at each acquisition time
point (Kragel et al., 2016). We employed a one-versus-
all approach for multiclass classification, where categori-
zations are performed by identifying the model (out of 7)
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with the highest dot product (no minimum difference is
required). In this way, each time point was labeled as the
emotion category with the largest dot product value.
Because the dot product is influenced by both the magni-
tude and similarity of the two vectors used in its computa-
tion, brain states that are classified into each emotion
category will tend, on average, to resemble the pattern
of weights that define each classification model. The
values reported in Kragel et al. (2016) for the DNS sample
were used in the present analyses, and the same methods
were applied here to the data from the NKI-RS sample.
We note that in no cases were the dot products iden-

tical. The average difference between the maximum dot
product and the second highest dot product was 0.839
(SD = 0.107) in the DNS sample (n = 499) and 0.1441
(SD = 0.0247) in the NKI-RS (n = 207). Thus, the aver-
age observed differences in classifier outputs were “very
large” with Cohen’s d = 7.84 for the DNS and d = 5.8 for
the NKI-RS. We also note it is unlikely that a small num-
ber of voxels contribute to the dot product used for clas-
sification. The PLS-DA algorithm reduces model
complexity by identifying a small number of latent dimen-
sions that span all inputs (voxels); thus, the contribution
of individual voxels is combined with that from thou-
sands of other voxels in the model. In addition, the
resting-state time series of each voxel is standardized to
have zero mean and unit variance, which reduces differ-
ences in scale across voxels, making it less likely for a
small number of voxels to have an undue influence.
Resting-state data are characterized by structured correla-
tions at multiple spatial scales (Hay, Ritter, Lobaugh, &
McIntosh, 2017); the high covariance between regions
also makes it unlikely that isolated regions are the primary
contributors to spontaneous emotion signaling at rest.
The present work is based on a supervised procedure

that requires brain states are assigned labels to train clas-
sification models. However, there is no assumption that
the labels used as “ground truth” to train the classifica-
tion models are correct in some theoretical sense.
There is an assumption that these brain states differ in
some way that is consistent across individuals, but the
precise nature of this difference is not specified. Brain
states could share labels because they are members of
a classically defined natural kind (Ekman & Cordaro,
2011), because they cause coordinated behavioral and
body changes (Anderson & Adolphs, 2014), because they
are sufficiently similar to emotion prototypes (Fehr &
Russell, 1984), because they involve distinctive patterns
of cognitive appraisal (Moors, Ellsworth, Scherer, &
Frijda, 2013), or because they are grouped that way by
situated conceptualizations/categorizations (Barrett,
2013, 2017). Any of the above explanations could be
the reason for category membership, and for this reason,
the ground truth labels can be considered theoretically
unbiased. Whether the brain-based emotion classifiers
are more or less consistent with any particular theoretical
account is not an assumption but is an open empirical

question (Azari et al., 2020; Kragel, Koban, Barrett, &
Wager, 2018).

Modeling Emotional Brain States as a
Markov Process

We modeled intrinsic emotional brain dynamics as a
Markov process (Figure 1). Markov processes have two
key characteristics: They are random and memoryless.
Markov processes are random because their outputs
are not determined by their parameters and initial condi-
tions. Unlike task-based fMRI, which produces signals
that are partially determined by experimental manipula-
tions, intrinsic brain activity measured using resting-state
fMRI is inherently less structured and is more likely to be
characterized as a stochastic process. Markov processes
are memoryless because future states of a system only
depend on the present but not past states of the system.
Using the DNS model development sample (n = 200),
we estimated parameters of a discrete-time Markov chain
(i.e., the 7 × 7 transition matrix P describing the proba-
bility of brain states changing from one emotional state to
another) from the sequence of resting-state fMRI emo-
tion classifications for each participant. This was accom-
plished by using the maximum likelihood estimation of
the transition matrix (Anderson & Goodman, 1957),
which corresponds to the sample proportion of transi-
tions from each state to all possible states of the system.
The estimated probability of transitioning from state i to
state j (Pi,j) is the number of observed transitions from i
to j divided by the total number of observed transitions
out of state i. Computing estimates for all possible tran-
sitions yields the full transition matrix P. We used this
procedure and created a single group-averaged model
by averaging transition matrices across participants.

To estimate the reliability ofmodel estimates, a split-half
analysis was performed using the first and second halves of
resting-state data from the DNS training data (i.e., the first
and second runs of scanning). The intraclass correlation
coefficient (ICC) was used as an estimate of model reliabil-
ity for parameters of group-level and individual subject
models (Shrout & Fleiss, 1979). Bootstrap confidence in-
tervals for the ICCwere estimated by randomly resampling
participants with replacement.

Validation Using Bayesian Model Comparisons

The Markov chain was evaluated in multiple independent
validation data sets using Bayesian information criterion
(BIC) analysis. For each participant in each test set, the
BIC was estimated as BIC = −2ln(L) + kln(n), where L
is the model log likelihood, k is the number of model
parameters (in this case, there are 7 × 6 = 42 unique
parameters, as all the transition probabilities sum to 1), and
n is the number of observations (256 acquisition volumes
for the DNS and 205 for NKI-RS). The log likelihood of an
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observed sequence of test data is defined as L=
Pn

i¼1 log
Pθ(Xi|Xi−1), where Pθ are elements of the transition
matrix, corresponding to the observed transitions in
independent data.

As a baseline for comparison, synthetic null models
were created by performing wavelet resampling of fMRI
time series (Kragel et al., 2016; Polyn, Natu, Cohen, &
Norman, 2005), which preserves the autocorrelation
present in the fMRI signal, and repeating the model esti-
mation procedure. This procedure was repeated 1000
times to estimate models that would be expected based
on autocorrelation alone. ΔBIC was computed as the dif-
ference in BIC between the group-averaged Markov chain
estimated on real time-series and the distribution of BIC
values based on synthetic autocorrelation. BIC was com-
puted separately on each random iteration by computing
the average log likelihood in each validation sample. The
mean and 95th percentile of ΔBIC were computed from
these two distributions (displayed in Figure 2). ΔBIC
values exceeding 10 are generally considered as very
strong evidence in favor of one model over another
(Kass & Raftery, 1995). For completeness, we report both
differences in log likelihood (ΔL) and BIC (ΔBIC).

Following model comparisons, we evaluated how brain
dynamics differed from the null autocorrelation model by
testing for differences in the magnitude of parameter es-
timates in the empirical Markov model. We tested for

column-wise differences in off-diagonal parameters of
the transition matrix because the synthetic autocorrela-
tion model predicts that transitions among different
states are equally likely. The proportion of off-diagonal
transitions were compared between different emotional
states using Friedman’s ANOVA because the ratios being
compared have a restricted range between 0 and 1 and
do not meet the distributional assumptions of parametric
ANOVA.

Estimating Transient Changes in Emotional
Brain States

Given the transition matrix P estimated from the DNS
training data, we estimated the probability of transition-
ing from state i to state j after n time points as Pni;j
(Gallager, 2013). This procedure was repeated for all ini-
tial states for n = 8 time steps (as probability estimates
stabilized at this number of time steps) to produce tran-
sient probability estimates of all emotional states (these
curves are shown in Figure 3). To evaluate the fidelity of
these predictions, Spearman correlations were computed
between model predictions and observed probabilities
for each of the eight time steps, evaluating the similarity
in the rank probability of the seven emotional states. This
analysis was performed for both of the test data sets

Figure 1. Modeling the intrinsic dynamics of emotional brain states. (A) Resting-state fMRI data were acquired and preprocessed, producing
multidimensional time series with hundreds of thousands of features and several hundred time points for each participant. (B) Voxel-wise maps for
each of the seven emotion categories, derived from a machine-learning analysis of a prior emotion induction study (Kragel & LaBar, 2015), were
applied to the preprocessed resting-state fMRI data at each time point (TR) by computing their dot product, thereby reducing the data to a
seven-dimensional time series (Kragel et al., 2016). (C) Each time point is classified by identifying the emotion category that yields the highest dot
product, which generates a sequence that reflects the best evidence for the brain being in one of the seven affective states at each resting-state time
point in the series. The classification sequence for one participant chosen at random is illustrated in the figure; based on the classifier’s predictions,
this individual was most often in a sad brain state (purple lines) toward the beginning of the resting-state scan and then shifted to being most
prominently in a neutral brain state (pink lines) later on. Each line represents one TR, and all 256 TRs from the resting-state period are concatenated
in the image and aligned left-to-right from the beginning to the end of the scan. Note that once a change in emotional state occurs, it usually lasts for
several seconds before shifting again. Maximum likelihood estimation is used to produce a transition matrix (i.e., parameter values for a discrete-time
Markov chain) that specifies the probability of transitioning from one emotional brain state to another, which is then averaged across all participants
in the model development sample (n = 200), which were then tested in independent data sets. The transition matrix from one individual participant
is shown in the figure.
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(held-out DNS participants, n = 299, and NKI-RS, n =
207), and comparisons were made against outputs from
the null autocorrelation model above. Differences in
correlation coefficients (between the empirical Markov
model and the synthetic autocorrelation model) were
made by taking the Fisher transform of Spearman corre-
lations and performing paired t tests.

Evaluating State Dynamics and Their Relation
to Psychopathology

One feature of a dynamic model is the tendency for a sys-
tem to transition to the same baseline state, as opposed
to transitioning rapidly among multiple states. States that
behave in this way act as hubs by facilitating transitions
among emotions in an organized way. We quantified
the extent to which emotional brain states acted as hubs
by computing the proportion of transitions to each state
that originated from a different emotional state, as op-
posed to a self-transition. Given evidence that emotion

dynamics play an important role in mental health and
well-being (Houben et al., 2015), we additionally exam-
ined the relationship between parameters of Markov
models and psychopathology, dichotomized as “present”
versus “absent” (for criteria and methods for diagnosis,
see the Participants section). We further evaluated emo-
tional inertia by comparing the likelihood of self-
transitions, which reflects the propensity to remain in
the same emotional state over time, as a function of men-
tal health diagnosis. Comparisons of the proportion of
off-diagonal transitions to neutral states (emotional reset-
ting) and emotional intertia between clinically diagnosed
and healthy participants were made using Wilcoxon rank
sum tests. This test was chosen because the proportions
being compared have a restricted range between 0 and 1
and do not meet the distributional assumptions of a two-
sample t test. Because of the transdiagnostic nature of
the mental health status grouping, the presence of more
than one disorder in many participants, frequent transi-
tions between disorders across the lifetime (Caspi et al.,

Figure 2. Markov models characterize emotional brain dynamics in multiple independent samples. (A) The transition matrix derived from 200
participants in the DNS. The color map indicates the probability of transitioning from one brain state (indicated by the index of the row, state i) to
another (indicated by the column, state j ). Greater probabilities along the diagonal show that the brain tends to stay in the same emotional state over
consecutive time points while at rest, while off-diagonal probability values indicate transitions between states. (B) BIC analysis indicates that the
empirical model shown in A predicts sequences of emotional brain states in two independent samples better than models based on autocorrelation
alone (distributions for 1,000 autocorrelation models are shown). (C) Neutral states serve as transition hubs in the network of emotions. Across the
resting-state fMRI session, individuals were, on average, more likely to transition from any emotional brain state to a neutral brain state than to any
other emotional brain state in the network. The network is visualized using a force-directed graph layout (Hu, 2005), with emotional states depicted
as gray circles and directed edges as colored lines oriented clockwise from source to destination. Colors use the same labeling scheme as in
Figure 1B. The width of the edges indicates the strength of the transition probabilities. Note that neutral states are relatively equidistant from all
emotional starting points in the graph.
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2020), and the lower number of participants with psycho-
pathology in the sample, we averaged the inertia scores
across all emotions and diagnoses.

RESULTS

Emotional brain dynamics were better characterized by
our discrete-time Markov chain model than a model
based on the inherent autocorrelation present in fMRI
measures of resting-state brain activity (Figure 2A). The
average log likelihood of the empirical Markov model
was higher than the autocorrelation model for test data
in independent participants from the DNS sample (ΔL =
357.28, 95% CI [81.90, 899.4]) and NKI-RS data set (ΔL =
366.15, 95% CI [116.8, 876.9]). A BIC analysis that com-
pared models based on their likelihood, while penalizing
for complexity, provided strong support (ΔBIC scores >
10) for the empirically derived Markov chain in both test
sets. The BIC of Markov chains derived from real time se-
ries were substantially larger than those of a distribution
of synthetic models approximating the autocorrelation in
the time-series data (DNS: ΔBIC = 714.57, 95% CI [163.8,
1798.8]; NKI-RS: ΔBIC = 732.31, 95% CI [233.6, 1753.4];
Figure 2B). These results indicate that the human brain
exhibits emotional brain dynamics that are present in
multiple independent data sets and that they cannot
simply be described in terms of temporal autocorrelation
inherent in fMRI data.

To quantify which aspects of brain dynamics differ from
pure autocorrelation, we tested for differences in themag-
nitude of parameter estimates in our Markov model. In
particular, we evaluated whether transitions from one
emotional state to another differ from one another (i.e.,
testing for column-wise differences in off-diagonal param-
eters of the transition matrix), as autocorrelation alone
would predict that transitions among different states are
equally likely. Examining differences in these parameter
values in the DNS development sample revealed strong
differences between emotions (χ2 = 174.03, p ≤ .0001,
Friedman’s ANOVA). Post hoc comparisons revealed that
the proportion of transitions to neutral states were the
greatest (M = .60, SD = .11) compared with the propor-
tion of transitions to other states (M = .51, SD = .07; all
pairwise comparisons p < .0001, corrected by Tukey–
Kramer tests). This result indicates that even though the
emotion-specific information maps were not optimized
to do so, they exhibit intrinsic dynamics that are consistent
with classic views positing that emotions emerge indepen-
dently against an affectively neutral background state
(Lewis, 2005). Neutral brain states thus serve as a common
transit hub between emotions (Figure 2C).
To assess how well the Markov model accounts for

transient changes in emotional states, we used it to esti-
mate the probability of transitioning to each emotional
state from every possible initial state. This was accom-
plished by exponentiating the transition matrix estimated

Figure 3. Predicted and
observed probabilities of being
in an emotional brain state
during rest. Colored curves
indicate the probability of
being in one of seven emotional
states over time after starting
in a given state (organized by
columns). For instance, the first
column of curves shows the
probability of being in each
emotional state after starting
from a state of contentment.
Note that there is a tendency for
the brain to remain in the same
emotional state (self-transition)
for several seconds. When
starting from an emotional
state, if the brain transitions to
another state (other-transitions),
it is most likely to transition to a
neutral state (indicated in pink)
rather than another emotional
state. Thin lines depict the
standard error of observed data.
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from our training data, with an exponent equal to the
number of time steps in the future. This procedure
yielded a series of probabilistic estimates of transitions
from one state to another at a future time (Figure 3).
These profiles of transitions were similar to those
observed in the test data sets (DNS: mean Spearman’s
r = .44, t(298) = 62.02, p < .0001; NKI-RS: mean
Spearman’s r = .42, t(206) = 43.08, p < .0001), more so
than simple autocorrelation models (DNS: Δr = .17,
t(297) = 21.74, p < .0001; NKI-RS: Δr = .10, t(206) =
13.69, p < .0001). Thus, our Markov model captures
moment-to-moment changes between brain states that
generalize across samples and captures information
beyond time-invariant or static differences in the activa-
tion of emotion-related neural substrates.
To establish the reliability of the Markov model, we

conducted a test–retest reliability analysis examining
the similarity of model parameters estimated on the first
and second scanning runs of the resting-state period in
the model development sample, as participants were
run in two consecutive 256-sec blocks (for more details,

see the Methods section). This analysis revealed excel-
lent levels of reliability for the group level model, ICC
(2, 1) = .9509, 95% CI [.94, .97], which was computed as
the average transition matrix of 200 participants. When
model parameters are based upon transitions from a single
participant, they are more variable but still have fair
reliability, ICC(2, 1) = .48, 95% CI [.43, .49]. Repeated
random subsampling of the group model revealed that
test–retest reliability reaches ICC(2, 1) = .9 when models
are averaged across 17 participants and plateaus at approx-
imately ICC(2, 1) = .95 at 100 participants.

Given the evidence that more variable and less struc-
tured emotion dynamics are associated with lower levels
of well-being and impaired mental health (see the
Introduction section), we additionally evaluated whether
the structure of intrinsic emotional brain dynamics
differed as a function of mental health status based on
DSM-IV criteria (see the Methods section for details). In
particular, we tested whether the proportion of transi-
tions from emotional to neutral brain states (what we call
“emotional resetting”) differed as a function of clinical

Figure 4. Emotional resetting
and inertia distinguish
resting-state brain activity
patterns in healthy individuals
from those with mental health
disorders. (A) Across two
validation cohorts, healthy
individuals exhibited a greater
likelihood to transition from an
emotional brain state to a
neutral one (emotional
resetting) than individuals with
a mental health diagnosis.
Proportions indicate the
number of transitions to neutral
states from emotional states
divided by the total number of
transitions to neutral. (B) Across
two validation cohorts,
individuals with a mental health
diagnosis exhibited greater
inertia in their spontaneous
brain activity patterns, as
quantified by a propensity to
remain in the same emotional
brain state over time (i.e.,

P7
i¼1

Pi,i for emotion states i in
transition matrix P). Proportions
represent the number of
self-transitions across all
emotions. Circles correspond to
individual participants. Dark
gray areas indicate the sample
standard deviation. Light gray
areas indicate the SEM. Solid
black lines denote sample
means. *p < .05, **p < .01,
***p < .0001.
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status. Tests for differences revealed that transitions to
neutral states were less common in individuals with psy-
chopathology (DNS: n = 68, M = 0.57, SD = 0.01; NKI-
RS: n = 26, M = 0.52, SD = 0.02) compared with healthy
individuals (DNS: n= 231,M= 0.60, SD= 0.006; NKI-RS:
n = 179, mean proportion = .59, SD = .008) in both
validation samples (DNS: Wilcoxon rank sum test: z =
−2.17, p = .03 ; NKI -RS: z = −2.61, p = .009;
Figure 4A). These results suggest that emotional resetting
may serve an affect regulation function. Furthermore,
we tested whether individuals with psychopathology
presented with greater inertia in their emotional brain
patterning. Using self-transition probabilities as an index
of inertia, we found that individuals with psychopathology
(DNS: n= 68, M= 0.49, SD= 0.06; NKI-RS: n= 26, M=
0.48, SD=0.08) had greater inertia than healthy individuals
(DNS: n= 231,M=0.47, SD=0.06; NKI-RS: n= 179,M=
0.44, SD=0.07) in both validation samples (DNS:Wilcoxon
rank sum test: z = 2.02, p = .04; NKI-RS: z = 3.59, p <
.0001; Figure 4B). Because of comorbidities and the limited
number of patients per diagnostic category, it was not
possible to further decompose these effects by diagnosis
(e.g., to test whether inert sadness was selectively asso-
ciated with depression).

As discussed in the Introduction section, it has been re-
cently called into question whether emotion dynamics as
measured by EMA predict well-being above and beyond
static behavioral measures of affect (Dejonckheere et al.,
2019). Based on this concern, we additionally ran a set of
control analyses that accounted for the contribution of
static measures of neutral signaling in the brain. We fit lo-
gistic regression models predicting clinical status on the
basis the proportion of transitions to neutral brain states
that originate from emotional brain states (emotional re-
setting) and two additional covariates: (1) the overall fre-
quency of neutral states and (2) the variance of neutral
states, which could potentially mediate the effect of dy-
namics. This analysis revealed that emotional resetting
uniquely contributed to the prediction of mental health
(DNS: β̂ = −11.68, SEM = 5.52, t(295) = 2.11, p = .03;
NKI-RS: β̂ = −6.17, SEM = 2.03, t(203) = 3.05, p =
.002). Thus, the relationship between transitions from
emotional to neutral brain states and mental health is
not likely a byproduct of healthy individuals having less
expressive or variable emotional brain systems at rest
but is a meaningful property of emotion dynamics that
may have a regulatory function.

DISCUSSION

The ebb and flow of thoughts and memories during rest-
ing wakefulness triggers emotions whose spontaneous
expression may yield insights into individual differences
in affect and risk for psychopathology. However, it has
been challenging to derive objective metrics of the brain
dynamics that mediate such changes in incidental affect,
which take place in the absence of external stimulation.

Here, we leveraged our prior machine-learning approach
to fMRI-based decoding of discrete emotions and com-
bined it with stochastic modeling to characterize how
the brain transitions among several emotional states
while participants mind wander at rest.
Using a Bayesian model comparison that penalizes

complexity, we found that our Markov process model
characterizes resting-state emotional brain dynamics in
two large out-of-sample cohorts. To provide a robust es-
timate of generalizability, we validated the model across
cohorts that differ in age and education level, and where
the resting-state fMRI data were collected on different
MRI scanners using different imaging parameters and
resting-state paradigms (e.g., eyes open/eyes closed).
Our model performed better than a synthetic “null”
model based on the inherent autocorrelation in fMRI
time series data. This improvement in performance indi-
cates that our model captures regularities in how the
brain transitions between emotional states rather than
simply capturing a general tendency of the brain to persist
in the same state over time.
Overall, self-transitions were more likely than transi-

tioning to another state, which implies that spontaneous
emotions have an intrinsic temporal duration in their
brain signaling. Our Markov process model predicts that
states tend to last for about 5–15 sec before transitioning
to another state. These average durations do not neces-
sarily correspond to subjective experience during the
resting state, as individual participants may repeatedly re-
turn to a specific brain state over time after brief excur-
sions to different states (see Figure 1C, where the
individual gradually transitioned from a predominantly
sad brain state to a predominantly neutral brain state
over a period of minutes). Subjective experience and
self-report measures of affect are known to involve vari-
able weight of events that take place over extended time-
scales, with an emphasis on recent and extreme events
(e.g., Varey & Kahneman, 1992). Our Markov model
was designed to describe brain dynamics on the order
of seconds, rather than that of self-report measures of af-
fective experience which fluctuate over longer time-
scales. Accordingly, we believe our model captures
fluctuations in ongoing neural processes that contribute
to conscious experience (e.g., changes in “first-order”
representations, see LeDoux & Lau, 2020; LeDoux &
Brown, 2017) rather than characterizing the dynamics
of experience directly. Other modeling schemes that in-
corporate time continuously (Suchard, Weiss, &
Sinsheimer, 2001) and/or model hierarchical temporal
structure (Fine, Singer, & Tishby, 1998) may produce dy-
namics that more closely correspond to those present in
self-report measures of emotion.
When other-transitions did occur, they most often went

to a neutral state irrespective of the specific emotional
start state—an affective chronometry feature that we
introduce here as “emotional resetting.” Considering
affective state dynamics as a graph derived from the
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transition matrix (Dabrowski & Hunt, 2011; Jarvis & Shier,
1999) permits relating states and transitions in a Markov
process to nodes and edges in a network from a graph
theoretic perspective. Neutral brain states occupied a
central hub position in the affective state network
(Figure 2C). Hubs serve to efficiently connect otherwise
distant nodes in a network. They also confer resilience
against random failures in networks, because many nodes
can be disrupted without altering the overall network
structure. At the same time, hubs can potentially lead to
catastrophic failures if they are damaged because of their
central position. In the case of emotional brain dynamics,
disrupting the neutral hub would impair the ease with
which brain states fluctuate between emotions, which
would be relatively spared if failures occurred in other
nodes. This network configuration is consistent with
dynamical systems models of emotion and large-scale
neural networks, which often efficiently organize around
a baseline attractor state or small number of metastates
(Vidaurre, Smith, & Woolrich, 2017; Lewis, 2005).
Emotional resetting to a neutral state was less likely to

occur in individuals diagnosed with a mental health con-
dition (Figure 4A), which suggests that this characteristic
of brain dynamics may play a role in adaptive emotion
regulation. Indeed, emotional resetting predicted mental
health status over and above the mean frequency and var-
iance of neutral states. Hence, this dynamic feature asso-
ciated with psychopathology is not likely to be explained
by a generic failure to engage or modify neutral states.
This result stands in contrast to a meta-analysis of 15
EMA studies, which concluded that dynamical measures
did not add uniquely to predictions of emotional well-
being (Houben et al., 2015). This discrepancy might re-
late to the importance of sampling emotions at a more
refined temporal scale than typical EMA studies, the value
added of continuous neurophysiological measures rela-
tive to spaced self-report data, and/or the improved sen-
sitivity afforded by our combined machine learning and
computational modeling approach.
By contrast, emotional inertia was more characteristic

of individuals with psychopathology than healthy partici-
pants (Figure 4B). We speculate that repetitive thinking
in the form of rumination and/or worry may play a role in
prolonging the duration of these emotional brain states
in individuals with psychopathology. Basic research on
emotion duration estimates has shown that rumination
is correlated with the duration of discrete emotions pres-
ent in autobiographical memories (Verduyn & Lavrijsen,
2015). Ruminative thinking is applied to both positive
and negative emotions as a form of emotion regulation;
it is exacerbated in individuals with depression, anxiety,
and other psychiatric disorders, and it predicts depres-
sion onset and interacts with negative cognitive styles to
predict depressive symptom duration (Nolen-Hoeksema
et al., 2008). Resting-state fMRI provides an opportunity
for such repetitive thought processes to emerge in the
context of a prolonged period of unconstrained task

demands. The opposing patterning of emotional reset-
ting and emotional inertia across individuals with and
without psychopathology support theories emphasizing
a key role for momentary affective state dynamics, inter-
play, and reinforcing loops at this timescale for informing
psychiatric trajectories (Wichers, 2014). Overall, our
findings indicate that it is possible to decode and predict
the spontaneous affective dynamics of the human brain
over a period of minutes and that such metrics may have
utility in clinical applications. It may be particularly inter-
esting to incorporate these neural metrics as outcome
measures in affective intervention trials, as there are cur-
rently no well-validated methods for assessing changes in
brain activity that index the spontaneous fluctuations of
specific emotions.

Most prior neuroimaging dynamics work has used
fMRI, EEG, or MEG to measure changes to eliciting emo-
tional stimuli at very short timescales (hundreds of mi-
croseconds to a few seconds), which likely reflect initial
cognitive and affective processes recruited to attend and
appraise external emotional stimuli. Here, we extend
such analyses to discrete emotions elicited by spontane-
ous thought over a timescale of seconds to minutes that
more closely approximate the time frame of emergent
subjective affective states. Recent advances in computa-
tional modeling, machine learning, and multivariate ana-
lytical approaches have enabled new insights into the
neurocognitive processes that mediate facets of emotional
experience while individuals engage with dynamic natural-
istic stimuli likemovies,music, narratives, and videogames
(for reviews, see Jääskeläinen, Sams, Glerean, & Ahveninen,
2021; Kragel & LaBar, 2016). Although these efforts demon-
strate that it is possible to track affective features from
complex, temporally extended naturalistic stimuli, the
studies have largely neglected to characterize the dynamic
transitions from one emotion to another and have left
open the question of modeling intrinsic dynamics during
mind-wandering in the absence of exteroceptive stimuli.
Our results contribute to the growing body of research
highlighting the importance of dynamic constructs and
computational modeling approaches in elucidating brain
function relevant for emotion processing and for differen-
tiating psychiatric illness.

Our study had several limitations. We used data from
existing convenience samples to develop and test the
reliability of the computational model. Because of the
smaller proportion of the study population with mental
health diagnoses, the variability of clinical presentation
profiles, and the co-occurrence of multiple diagnoses,
we could not evaluate the disorder specificity within
the clinical sample, the association of specific disorders
with alterations in processing specific emotions, or any
gender differences. Although assessments revealed excel-
lent levels of reliability even at relatively small sample
sizes (n = 17), evaluating dynamics for individual partic-
ipants will require improvements, either by increasing
the duration of resting-state scans, combining data across
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resting-state and task scans, further reducing potential
sources of error (e.g., subject motion or thermal noise),
or adapting model estimation procedures to optimize
reliability explicitly (Elliott, Knodt, & Hariri, 2021).
Additionally, the archival data sets we used for analyses
did not contain an independent measure of emotional
state (e.g., self-report or recording of autonomic nervous
system activity) that could be used to corroborate the
emotion dynamics measured from brain activity. Finally,
we only tested a small number of basic emotions. Work
examining a larger number of emotion categories have
revealed gradients of experience (e.g., from anxiety to
fear to horror) that are well suited for dynamic analysis
(Cowen & Keltner, 2017). Despite these limitations, we
feel that our affective computing approach takes an
important step forward in characterizing how the human
brain spontaneously transitions across emotions at rest,
with implications for identifying profiles of maladaptive
intrinsic dynamics that contribute to psychopathology.
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